• Board contributors include instructors with "800" GMAT scores.
  • 95% of posts have replies within 24 hours.
  • Join for discounts with 800score, VeritasPrep and ManhattanGMAT


FAQ  - Register  - Search - Login 

All times are UTC - 7 hours




Post new topic Reply to topic  [ 2 posts ] 
Author Message
 Post subject: GMAT Algebra
PostPosted: Sat May 04, 2013 5:03 am 
Offline
User avatar

Joined: Tue Apr 13, 2010 8:48 am
Posts: 483
What is the two-digit positive integer whose tens digit is a and whose units digit is b?
(1) 2a > 3b > 6
(2) a > 2b > 6

A. Statement (1) BY ITSELF is sufficient to answer the question, but statement (2) by itself is not.
B. Statement (2) BY ITSELF is sufficient to answer the question, but statement (1) by itself is not.
C. Statements (1) and (2) TAKEN TOGETHER are sufficient to answer the question, even though NEITHER statement BY ITSELF is sufficient.
D. Either statement BY ITSELF is sufficient to answer the question.
E. Statements (1) and (2) TAKEN TOGETHER are NOT sufficient to answer the question, meaning that further information would be needed to answer the question.

(B) Statement (1) is not sufficient because there are many 2-digit numbers that satisfy the inequality given in Statement (1). For example, both 63 and 53 are possible numbers for ab.
For 63, 2(6) > 3(3) > 6
For 53, 2(5) > 3(3) > 6.
So Statement (1) is not sufficient by itself.

Statement (2) is sufficient by itself. For 2b to be greater than 6, b must be greater than 3. However, b cannot be 5 or greater, because 2b would then be greater than 10, which is impossible because a is a digit.

Therefore, b must be 4, and a must be 9, and the number ab must be 94.

Since Statement (1) is not sufficient, and Statement (2) is sufficient, the correct answer is choice (B).
----------
This does not explain why Statement 2 tells us that a = 9. If b = 4, then the statement merely suggests that 2(4) < 3a, so 8/3 < a, which only tells us that a can be anything between 3 and 9 (the same thing as 6 < 3a).


Top
 Profile  
 
 Post subject: Re: GMAT Algebra
PostPosted: Sat May 04, 2013 5:04 am 
Offline
User avatar

Joined: Fri Apr 09, 2010 2:11 pm
Posts: 459
Quote:
the statement merely suggests that 2(4) < 3a, so 8/3 < a
It is NOT 2(4) < 3a, but 2(4) < a.

So a > 8. Besides, a is a digit, so it must be 9.


Top
 Profile  
 
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 2 posts ] 

All times are UTC - 7 hours


Who is online

Users browsing this forum: No registered users and 4 guests


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
cron
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
Template made by DEVPPL -
phpBB SEO
 
GMAT(TM) and GMAT CAT (TM) are registered trademarks of the Graduate Management Admission Council(TM). The Graduate Management Admission Council(TM) does not endorse, nor is affiliated in any way with the owner or any content of this site.